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A h-adaptive "nite element strategy for acoustic problems is presented. The key
features of the strategy are error estimation, adaptive mesh generation and remeshing,
"nite element analysis. The error estimation has been performed using the
superconvergent patch recovery technique for prime variables of "nite element
approximation (SPRD). For adaptive mesh generation and remeshing, the
commercial software package I-DEAS has been applied. Finite element analysis
has been performed using commercial software package SYSNOISE. Numerical
examples are shown to illustrate the properties of the SPRD technique and the
procedure of the proposed adaptive strategy.
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1. INTRODUCTION

Most practical problems of acoustics are solved by standard computational
techniques such as boundary element method (BEM), "nite di!erence and "nite
element method (FEM). The "nite element method can be preferred to the boundary
element technique due to the fact that FEM does not encounter the di$culties of
numerical implementation which are common for the BEM approach. However,
even after more than 30 years of development of the "nite element method, the question
of estimating and controlling discretization errors remains a major topic of research.

In acoustic problems, steady state sound response is governed by the
Helmholtz equation, which can be characterized by a potential loss of ellipticity
with increasing wave number in the propagation region. The Galerkin method
provides good phase and amplitude accuracy as long as the mesh is "ne enough
with respect to the wave number. However, &&"ne enough'' is often too expensive for
adequate resolution, even for moderate wave numbers. So one of the main concerns
in acoustic "nite element analysis is the adequacy of the "nite element mesh.
Acousticians often use the so-called &&rule of the thumb'' which prescribes the
minimal discretization of a wavelength. A non-uniform "nite element mesh is
needed in many practical problems; increasingly "ner grids are required near
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singularities and non-smooth boundaries. Such a discretization process, which is
based on the &&rule of thumb'', is unable to predict a proper resolution and the
proper order of the approximation at each location and usually produces a mesh
with too many elements and still one does not have a direct measure of the error.
Another alternative is to "nd some means to identify critical regions that have to be
re"ned. That is, starting solving problems on a crude mesh, one has to estimate
truncation errors in di!erent locations.

The most popular approach to enhance accuracy in an e$cient way is to use an
adaptive "nite element strategy. In recent years, many adaptive methods have been
proposed using di!erent error estimators that can greatly improve the quality of the
"nite element solution. In particular, the h-method is widely applied, where the new
degrees of freedom have to be added to the selected elements in the analysis domain
by the subdivision of elements or by a completely new unstructured mesh.

The most important ingredient in an adaptive remeshing approach is the highly
reliable estimation of the discretization errors. A posteriori error estimation
continues to be an active research area since the past decade. Some a posteriori
error estimators have been proposed recently. Bouillard et al. [1] implemented the
original superconvergent patch recovery (SPR) technique for acoustic "nite element
analysis. The original concepts are extended to complex variables and the reliability
of the error estimation is studied. Tetambe and Rajakumar [2] presented the error
estimation strategy for acoustic analysis based on nodal averaging technique.
A residual-based a posteriori error estimator for Helmholtz equation was presented
by Harari et al. [3].

In the present study, we have implemented the superconvergent patch recovery
for prime variables (SPRD) technique to estimate the discretization error of the
solution. Originally, this technique was proposed to assess the quality of the "nite
element solution in free vibration analysis [4, 5].

Nowadays, in many commercial software packages, error estimation techniques
are mainly available for linear structural and steady state thermal analyses. Since
commercial software for "nite element analysis provides many features for interfacing
with other mechanical computer-aided engineering technologies, we construct an
adaptive remeshing strategy combining our error estimation technique with the
available commercial packages. For "nite element analysis we use the commercial
code SYSNOISE [6]. The commercial package I-DEAS [7] is implemented to
generate the initial mesh and to perform adaptive remeshing procedures. The
numerical methods used in the technique are outlined and several examples are cited
to show the wide range of this method's applicability. In the following sections, we
present the development and implementation of our approach with its main issues:
mesh generator, solution procedure, error estimator and re"nement strategy.

2. ERROR ESTIMATION

In adaptive analysis the error estimate plays a crucial role, which not only
provides the information about the accuracy of the "nite element solution, but also
gives the indicator for mesh re"nement.
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At the beginning we present governing equations of the acoustical analysis. The
wave equation governing the propagation of sound through as a compressible,
inviscid, non-#owing #uid in enclosures can be concisely expressed as [8]
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where +2 is the Laplacian operator, p is the acoustical pressure, c is the sound
speed, v is the #uid particle velocity, o is the density of the #uid, n is a unit normal to
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denote the boundaries with

Dirichlet, Neumann and Robin conditions respectively. It is assumed that acoustic
pressure is a time harmonic function p"qe+ut. With "nite element approximation
qh"N(x)q, using standard Galerkin procedure, the governing equations for the
frequency domain will be of the form

(K#jouC!u2M)q"!jouF, (5)

where K is derived from the #uid potential energy; C is derived from the energy
dissipated on the boundary walls and M is derived by using the kinetic energy
expression, u is the angular frequency of excitation, F is the generalized excitation
term and q is the vector of nodal pressure values.

With the "nite element solution of the problem, pressure and velocity
approximations qh and vh"!(1/jou)+qh, respectively, are obtained. To calculate
steady state pressure and velocities the commercial SYSNOISE code is employed.

In order to measure accuracy one has to introduce suitable norms. The error of
the "nite element solution can be de"ned by using the usual H1-seminorm
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where v is the exact solution for the velocities, X denotes the #uid domain and
f8 denotes the complex conjugate. A relative error of the "nite element
approximation can be expressed as
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From a priori error estimation results [9], one can express that the global relative
error is bounded as

g)C
1
(m)hm#C

2
(m)kh2m, (8)

with h"kh/2m, wave number k"u/c, where m is the order of the FE basis
functions and h is the characteristic size of the "nite elements. For linear elements
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m"1, equation (8) will be of the form

n)C
1
kh#C

2
k3h2. (9)

The "rst term in the error bound re#ects the classical best approximation error
while the second term indicates pollution of optimal error for high wave number
[9].

As the exact solution of the problem generally is not known, the errors are
usually estimated by a posteriori methods. There have been a number of methods to
estimate the discretization error of the "nite element solution. One of the most
popular approaches is the so-called postprocessed error estimator. The purpose of
the postprocessed error estimation is to provide a local estimate of the solution
error in some norm. Subsequent to the determination of the improved pressure "eld
the elementwise and the global errors are computed. In the postprocessed
procedures the errors are estimated by computing the di!erence between an
improved solution and the original "nite element solution as follows:
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The improved velocity solution v* is determined from the new pressure "eld q* of
higher order of accuracy, which is obtained by using the SPRD technique.

This new pressure "eld q* of m#1 order will be de"ned over a patch of elements
and this new "eld is required to be a least-squares "t to the original "nite element
solution at the superconvergent points where the accuracy of the "nite element
solution is higher. These locations for prime variables of the "nite element
approximation are nodal points. The new pressure "eld q* over an element is
constructed by using ordinary local basis functions of the order m#1,
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where r is used to denote the original "nite element nodes and s denotes the
additional nodes of the element of the recovered displacement "eld; N*

r
(x) and
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s
(x) are the local basis functions of the order m#1 associated with the original

element nodes and the additional ones respectively.
The nodal values of the original "nite element pressures are assumed to be the

same as those of the original "nite element solution q*
q
,qh

r
, and the recovered

pressure values q*
s

at the additional nodes are obtained by solving the following
least-squares problem in the element patch.
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in which the residual R
q
(x

j
) is calculated at the locations ns where the original "nite

element solution is superconvergent or at least highly accurate (nodal points),
w
j

denotes the weighting function (for more details see [4]) and X
t
denotes the

domain of the element patch. The residual is de"ned by

R
q
"q f *

!qh, (14)

and q f * belongs to a polynomial expansion of order m#1,

q f *
"Q (x)b, (15)

where Q(x) is a row matrix containing a monomial term of physical co-ordinates of
m#1 order, and the vector b is a set of unknown parameters to be determined.

We use a reduced element patch described in reference [4] which has an
extension of size 2h (where h is a characteristic element size in the local patch) in
order to maintain the locality of the least-squares "t. This enables us to reduce the
cost of computation and at the same time to increase the accuracy of the recovered
displacement "eld. Only boundary patches, which have not enough elements for
a reduced patch, are constructed in the usual way.

The approach described is a local updating method, so no global system of the
equations has to be solved. The number of equations to be solved is small and the
cost of the recovery procedure is proportional to the number of the mesh nodes.

The quality of the error estimator is measured by its e!ectivity index, de"ned as
the ratio between the estimated and the exact errors:

h"DeN D/De D . (16)

An error estimator is named asymptotically exact if h approaches unity as the
characteristic size of the "nite element h tends to zero.

With the estimated error in each element at hand, the total error of the "nite
element solution becomes

DeN D2"
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D2, (17)

where NE¸ is the total number of elements. As the estimated error is calculated for
each element, it can be used to determine portions of the "nite element mesh which
need to be re"ned.

3. REMESHING STRATEGY

In this section we present a method with a global remeshing strategy which
provides a very simple and rapid way to perform adaptive computations. The main
ingredients of this remeshing strategy are h-re5nement*consists on building a new
mesh, using the same type of elements; optimality criteria*re"nement is organized
with the aim of achieving equal error in each element of the new mesh; iterative
process*the target in each stage of re"nement is to reduce the global error until the
calculated error drops below a users speci"ed value.



910 R. BAUS[ YS AND N.-E. WIBERG
The main goal of this strategy is to obtain the re"ned mesh, which has an
acceptable error level for the whole domain, and this can be stated as

gh)g6 , (18)

where g6 is the maximum permissible error. To obtain the mesh which satis"es this
condition, we implement the standard h-method which is based on the
consideration that the discretization error is constant in the element. The overall
accuracy of the numerical simulation is measured through the non-dimensional
estimated global error, which may be regarded as a sum of the element
contributions,
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where Dqh D denotes the seminorm of the FE solution itself. The accuracy of the
numerical simulation can be measured through the other acoustic global
indicators.

Once error estimation has been performed and global error does not satisfy the
prescribed tolerance, the next step is to re"ne the mesh. The remeshing process is
driven by the estimated relative element errors. These estimated relative element
errors g

e
are used as the initial information for adaptive remeshing within I-DEAS.

The new element sizes are calculated by the use of a mesh optimality criterion to be
an equally distributed error over the elements.

The #owchart of a generic adaptive strategy is shown in Figure 1.

4. NUMERICAL EXAMPLES

Numerical examples from 2-D acoustics will demonstrate the performances of
the SPRD technique for the error estimation and adaptive remeshing strategy. As it
was mentioned above, the recovered pressure "eld q* is constructed by using Q(x)
with a polynomial of order m#1 for all quadrilateral and triangular elements. For
all examples, #uid properties with sound velocity c"340 m/s and density o set to
1)225 kg/m3 are assumed. An acoustic excitation is caused by a piston-like surface
under harmonic motion at a velocity amplitude of v

0
along the normal to the surface.

Adaptive remeshing strategy is performed by using 3-node linear triangular elements.

4.1. TUBE PROBLEM

Consider a tube of length ¸"1)0 m and width H"0)1 m which is shown in
Figure 2. The surface of the excitation is at the left end of the tube. On the other
boundaries the normal velocity is set to zero. Regular meshes for both elements
linear, quadrilateral and triangular, are considered. Typical meshes for
quadrilateral and triangular elements are presented in Figures 2 and 3. A sequence
of three regular meshes with 20]2, 40]4 and 80]8 elements is used to study the
rate of convergence and the accuracy of the results for both quadrilateral and
triangular elements.



Figure 1. Flow chart of the adaptive acoustic analysis.
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For this problem an analytical solution is available and can be expressed by

v (x)"
v
0

sin(k¸)
sin[k (¸!x)]. (20)



Figure 2. Geometry, excitation and typical quadrilateral mesh.

Figure 3. Typical triangular mesh.

Figure 4. Convergence rate of triangular elements at 50 Hz.
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The error estimation was performed for two frequencies of the excitation, 50 and
750 Hz. In the "rst case, the non-dimensional wave number k@ is then equal to 0)92
and for the coarsest mesh kh"0)046@1 and k2h"0)0432@1 and we will study the
behaviour of the postprocessed error estimation in the asymptotic range since both
assumptions concerning kh and k2h hold. In the second case k@ is equal to 13)85 and
for the coarsest mesh kh"0)691(1 and k2h"9)59'1 and we will study the
behaviour of the postprocessed error estimation in the preasymptotic range since
only the assumption concerning kh holds. Notice that only in the "rst case does the
non-dimensional wave number respects the criterion of low wave number. The
numerical results of the convergence rate for linear triangular elements are plotted
in Figures 4 and 5. The error in energy norm of the original "nite element solution
Dq!qh D, of the post-processed solution Dq*!qh D and of the estimated error of the



Figure 5. Convergence rate of triangular elements at 750 Hz.

Figure 6. E!ectivity indices of triangular and quadrilateral elements of 50 Hz.
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"nite element solution Dq!q* D is presented in these "gures. With the results of the
numerical experiments at hand, one can make the following observations.

1. The original "nite element solution exhibits order of accuracy O(h) as
predicted by a priori error estimation.

2. The recovered solution obtained by SPRD technique demonstrates superior
accuracy with respect to the original "nite element solution.



Figure 7. E!ectivity indices of triangular and quadrilateral elements at 750 Hz.
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3. The superconvergent properties of the improved solution are demonstrated
for both cases in asymptotic and preasymptotic ranges.

4. The proposed SPRD technique slightly underestimates the exact error of the
"nite element solution.

The convergence of the e!ectivity indices is plotted in Figures 6 and 7. One can
observe that the e!ectivity indices converge to one rapidly for both the
quadrilateral and triangular elements tested when the "nite element mesh is re"ned.
The numerical results show an asymptotic exactness of the proposed error
estimator based on the SPRD technique.

4.2. TWO-DIMENSIONAL CAVITY

The second example is a room of length ¸"5 m and width H"3 m as shown in
Figure 8. Acoustic excitation is presented by a vibrating panel with velocity
v
0
"1)0 m/s as shown in the "gure. The normal boundary velocity is set to be 0 at

the other sides. The "rst "ve acoustic eigenfrequencies obtained by the initial mesh
are as follows: 34)15, 57)16, 66)9, 69)18 and 90)73 Hz. Two di!erent frequencies of
excitation 20 and 190 Hz are studied. The sequence of adaptive remeshing begins
with quite coarse mesh of 127 elements and results in a solution in which the
relative error is 26)1% at 20 Hz and 33)1% at 190 Hz. The "nal meshes, which are
obtained after four steps, are presented in Figures 9 and 10. Trying to obtain a "nal
mesh in a single adaptive step would result in the over-re"nement of the mesh. It is
apparent that at low frequencies the improvement is very local and at the higher



Figure 8. Geometry, boundary conditions and initial mesh of the room.

Figure 9. Final mesh of the room at 20 Hz.
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Figure 10. Final mesh of the room at 190 Hz.

Figure 11. Geometry, boundary conditions and initial mesh of expansion chamber.
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frequencies one has a demand for re"nement in all the cavity. It should be
mentioned that no a priori information is used to achieve the solution of the
required accuracy.

4.3. EXPANSION CHAMBER

The two-dimensional model of the expansion chamber with a perforated outlet
pipe studied as shown in Figure 11. Acoustic excitation is presented by a vibrating



Figure 12. Optimal mesh of the expansion chamber at 100 Hz.

Figure 13. Optimal mesh of the expansion chamber at 1100 Hz.
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panel with velocity v
0
"0)1 ms at the left-hand side. At the right-hand side the

boundary condition of the form Lq/Ln"jkq, equation (4), is assumed. The normal
boundary velocity is set to be 0 at the other sides. The "rst "ve acoustic
eigenfrequencies obtained by the initial mesh are as follows: 360)77, 687)09, 826)66,
897)11 and 1130)16 Hz. Two di!erent frequencies of excitation, 100 and 1100 Hz,
are studied. The adaptive remeshing procedure starts with an initial mesh of 134
elements and relative errors of the "nite element solution are 21)97% at 100 Hz and
23)09% at 1100 Hz. For both cases the optimal meshes are presented in Figures 12
and 13. The optimal meshes are found after four steps. In the case of the low
frequency the optimal mesh in comparison with initial mesh enables one to detect
singularities of the "nite element solution but the distributions of the main
characteristics such as pressure and velocities are quite close outside the regions of
singularities. For the higher frequency case the initial and optimal meshes produce
completely di!erent "elds of the pressure as shown in Figures 14 and 15.



Figure 14. Pressure by initial mesh at 1100 Hz.

Figure 15. Pressure by optimal mesh at 1100 Hz.

Figure 16. Geometry, boundary conditions and initial mesh of the car enclosure.
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Figure 17. Optimal mesh of the car enclosure at 50 Hz.

Figure 18. Optimal mesh of the car enclosure at 350 Hz.

Figure 19. Velocity in car enclosure (x direction/amplitude) at 50 Hz by initial mesh.
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Figure 20. Velocity in car enclosure (x direction/amplitude) at 50 Hz by optimal mesh.

Figure 21. Velocity in car enclosure (x direction/amplitude) at 350 Hz by initial mesh.
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4.4. CAR ENCLOSURE

The two-dimensional model of the car enclosure is presented in Figure 16. The
normal boundary velocity is set to be 0 at all sides except for the vibrating panel
with velocity v

0
"3)0]10~4 m/s at the left-hand side. The "rst "ve acoustic

eigenfrequencies obtained by the initial mesh are as follows: 74)38, 122)33, 131)14,
175)88 and 230)39 Hz. Two di!erent frequencies of excitation, 50 and 350 Hz, are
studied. The initial mesh of 989 elements used in the adaptive scheme gives the
relative errors of the "nite element solution as 7)41% at 50 Hz and 13)27% at
350 Hz. For both cases, the optimal meshes are presented in Figures 17 and 18. It is
apparent that at the higher frequency the optimal mesh consists of a larger number
of elements but some regions of utmost re"nement coincide. The comparison of the
velocity in the x direction simulated by the initial and optimal meshes at di!erent
frequencies is presented in Figures 19}22. It is evident that in the case of low
frequencies of excitation, simulation by the initial mesh does not detect the



Figure 22. Velocity in car enclosure (x direction/amplitude) at 350 Hz by optimal mesh.
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singularities of the solution. In the case of higher frequencies simulation by the
optimal mesh produces the peaks of the velocity in more local regions.

5. CONCLUSIONS

The paper has presented an adaptive "nite element strategy for acoustic
problems. This strategy uses adaptive "nite element meshing and remeshing that is
performed by the commercial package I-DEAS, "nite element analysis using the
software SYSNOISE and error estimation is done by an additional postprocessing
unit. Superconvergent patch recovery technique for prime variables of "nite
element approximation (SPRD) is applied for the error estimation. Numerical
experiments show the reliability of the proposed SPRD technique due to the fact
that the recovered gradient "eld exhibits superconvergence properties. The
proposed adaptive strategy is based on h-re"nement. Numerical examples have
demonstrated that the present adaptive strategy is able to create an optimal mesh in
which the criterion of the error equidistribution is satis"ed. The designed optimal
meshes provide not only solutions of the prescribed accuracy but also detect all
singularities in the solution. Although two-dimensional problems are studied, the
proposed strategy can be extended to three-dimensional problems.
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